

Chemical Kinetics Modeling of Antioxidant Reactions in Lubricating Oils Carleton University

Direct Link: https://www.AcademicKeys.com/r?job=232333

Downloaded On: May. 8, 2024 2:07am Posted Mar. 4, 2024, set to expire Jul. 4, 2024

Job Title Chemical Kinetics Modeling of Antioxidant Reactions

in Lubricating Oils

Department Mechanical and Aerospace Engineering

https://carleton.ca/mae

Institution Carleton University

Ottawa, Ontario

Date Posted Mar. 4, 2024

Application Deadline Open Until Filled

Position Start Date Available Immediately

Job Categories Post-Doc

Academic Field(s) Chemical/Petroleum

Job Website https://carleton.ca/nanomechanics/

Apply By Email ronmiller@cunet.carleton.ca

Job Description

We are currently seeking to hire a Post-Doctoral Fellow for a term of up to 2 years, to work on a project to model the degradation of lubricants in bearing and engine lubrication environments. Our industrial partner has an interest in developing an in-line oil monitor capable of detecting the remaining useful life of a lubricating oil. This requires an accurate model of the relationship between oil operating conditions and detectable levels of antioxidant degradation by-products.

While it is known that the consumption of antioxidant additives is a key indicator of lubricant degradation, the quantitative relationship between operating conditions, antioxidant by-product concentrations and reaction rates is not fully understood. In this project, we will develop this understanding through a combination of theoretical calculations and experiments. The end goal is an

Chemical Kinetics Modeling of Antioxidant Reactions in Lubricating Oils Carleton University

Direct Link: https://www.AcademicKeys.com/r?job=232333
Downloaded On: May. 8, 2024 2:07am
Posted Mar. 4, 2024, set to expire Jul. 4, 2024

"engineering" model of the relationship between oil operating history and by-product formation, which will be validated with the help of the experimental data.

The PDF will work on the development of the chemical kinetics modelling aspects of the project. Using a combination of the known literature, experimentally determined rate parameters and first-principles models, the PDF will test and refine databases of reaction-rate parameters and develop a model of anti-oxidant consumption for a variety of pressure and temperature conditions.

Interested candidates should have a PhD in Chemical Engineering, Chemistry, Mechanical Engineering, or a related discipline and experience with one or more of (1) chemical kinetics modeling, (2) experimental determination of reaction rate constants in condensed-phase (liquid) systems, (3) characterization methods such as HPLC, Raman Spectroscopy and GC-MS, and (4) computational fluid dynamics.

Please submit a CV and the names of three references to Professor Miller to apply.

EEO/AA Policy

We are strongly committed to equity, diversity, and inclusion in the nomination and appointment process.

Carleton University is committed to fostering diversity within its community as a source of excellence, cultural enrichment, and social strength. We welcome those who would contribute to the further diversification of our university including, but not limited to: women and gender minorities; racialized individuals; Indigenous Peoples; persons with disabilities; and persons of any sexual orientation and/or expression. We invite you to review our revitalized Indigenous strategy, Kinàmàgawin at https://carleton.ca/indigenousinitiatives/cu-files/kinamagawin/ and visit our Department of Equity and Inclusive Communities at http://carleton.ca/equity for information about our commitment to leadership in the areas of equity, diversity, and inclusion.

Accessibility is a university strategic priority and applicants selected for an interview who require accommodations are invited to contact Professor Miller as soon as possible to ensure that appropriate arrangements may be made.

Chemical Kinetics Modeling of Antioxidant Reactions in Lubricating Oils Carleton University

Direct Link: https://www.AcademicKeys.com/r?job=232333 Downloaded On: May. 8, 2024 2:07am

Posted Mar. 4, 2024, set to expire Jul. 4, 2024

Contact Information

Please reference Academickeys in your cover letter when applying for or inquiring about this job announcement.

Contact Ron Miller

Mechanical and Aerospace Engineering

Carleton University 1125 Colonel By Dr. Ottawa, ON K1S5B6

Canada

Contact E-mail ronmiller@cunet.carleton.ca