Metabolic engineering, which draws upon the key engineering principles of integration and quantification, is a platform technology that provides solutions to various biological problems in the context of systems and synthetic biology. In particular, we are interested in developing and applying systematic and combinatorial methods for strain improvement for the production of fuels, chemicals, and nutraceuticals. Also, we would like to extend these methods for studying fundamental biology problems, such as aging and stress response. The overall goals of our research are (1) to develop useful/efficient computational and experimental tools for the dissection of complex metabolic networks in microbial cells, and (2) to create optimal strains for biotechnological processes using these developed tools.
Probing, characterizing, and engineering cellular state through systems and synthetic biology; Metabolic engineering for production of value added products (fuels, chemicals, and nutraceuticals)